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1 Verifying Permutons as Limits and Integrating the Joint
CDF of a Permuton

1.1 Recap of last lecture

Last time, we defined the subpermutation density

d(σ, π) = prob. |σ| random elements of π yield σ as a subpermutation,

where σ, π are two permutations. We also defined permutons, which are probability
measures on the Borel σ-algebra of [0, 1]2 that have uniform marginals; these represent an
analytic notion of permutations.

A µ-random permutation of size k, where µ is a permuton, is generated by sampling
k points independently from µ and reading a permutation off of the ordering of x- and y-
coordinates. We also defined d(σ, µ) to be the probability a µ-random permutation of size
|σ| is σ.

We said that a sequence (πn)n∈N of permutations is convergent if |πn| → ∞ and for
every permutation σ, limn→∞ d(σ, πn) exists. A permuton µ is a limit of a convergent
sequence (πn)n∈N if for every permutation σ, limn→∞ d(σ, πn) = d(σ, µ). Last time, we
wanted to prove the following statement:

Proposition 1.1. Every convergent sequence of permutations has a limit permuton.

The limit is unique, and proving the uniqueness is left as an exercise. Last time, we
proved the following lemma:

Lemma 1.1. Without loss of generality, for every k, there exists an n0 such that for all
n ≥ n0, 2

k divides |πn|.

We also defined matrices Ak
n, which were 2k × 2k matrices, by

(Ak
n)i,j :=

{x : i−1
2k

|πn| < x ≤ i
2k
|πn| and j−1

2k
|πn| < x ≤ j

2k
|πn|

|πn|
,
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where we index the matrices from left to right and bottom to top. We also defined Ak to
be the coordinate-wise limits of Ak

n. Using these matrices, we defined a premeasure µ0 on
the dyadic squares in [0, 1]2 by µ0([

i−1
2k

, i
2k
) × [ j−1

2k
, j
2k
)) = (Ak)i,j . Using Carathéodory’s

extension theorem, we furnished the existence of a measure µ on the Borel σ-algebra
extending µ.

1.2 Verifying our permuton construction

Now, let’s finish the proof.

Proof. We have a convergent sequence (πn)n∈N of permutations and a measure µ. and we
want to show that for every permutation σ,

d(σ, µ) = lim
n→∞

d(σ, πn).

We will show that for every permutation σ and ε > 0, |d(σ, µ)− limn→∞ d(σ, πn)| < ε. Fix
σ, and let k be such that 2k > |σ|. Let

ρ(σ, k) = P(µ-random permutation of size |σ| = σ | E),

where E is the event such that among the points (x1, y1), . . . , (x|σ|, y|σ|), the x- or y-
coordinates of no two points fall into the same dyadic interval. That is, there do not exist
1 ≤ i ̸= j ≤ |σ| and 1 ≤ m ≤ 2k such that x1 ∈ [m−1

2k
, m
2k
) and yi ∈ [m−1

2k
, m
2k
) and likewise

for the y-coordinates. The idea is that we don’t want to sample two points from the same
row or the same column of our grid.

We can crudely upper bound

P(Ec) ≤ 2

(
|σ|
2

)
1

2k

using a union bound. As a consequence,

ρ(σ, k)

(
1− 2

(
|σ|
2

)
1

2k

)
≤ d(σ, µ) ≤ ρ(σ, k)

(
1− 2

(
|σ|
2

)
1

2k

)
+ 2

(
|σ|
2

)
1

2k
.

So we conclude that

|d(σ, µ)− ρ(σ, k)| ≤ 2

(
|σ|
2

)
1

2k
.

We will now argue that

ρ(σ, k)

(
1− 2

(
|σ|
2

)
1

2k

)
≤ d(σ, πn) ≤ ρ(σ, k)

(
1− 2

(
|σ|
2

)
1

2k

)
+ 2

(
|σ|
2

)
1

2k
,
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and letting n → ∞ will give us that∣∣∣ lim
n→∞

d(σ, πn)− ρ(σ, k)
∣∣∣ ≤ 2

(
|σ|
2

)
1

2k
.

Then we will have proven the desired claim with ε = 4
(|σ|
2

)
1
2k
. Letting k → ∞ will then

finish the proof.
Let us observe that

ρ(σ, k) =
∑

1≤x1<···<x|σ|≤2k

1≤y1<···<y|σ|≤2k

|σ|!
k−1∏
i=1

(Ak)xi,yσ(i)
,

where the |σ|! comes from all different orders we can sample the |σ| points. If we define
ρn(σ, k) to be the same thing but with respect to πn, then

ρn(σ, k)

(
1− 2

(
|σ|
2

)
1

2k

)
≤ d(σ, πn) ≤ ρn(σ, k)

(
1− 2

(
|σ|
2

)
1

2k

)
+ 2

(
|σ|
2

)
1

2k
,

and the desired bound follows.

1.3 Integrating the joint CDF of a permuton

Theorem 1.1. Let (πn)n∈N be a sequence of permutation such that limn→∞ d(σ, πn) =
1
24

for every σ ∈ S4. Then (πn)n∈N is convergent, and limn→∞ d(σ, πn) = 1
|σ|! for every

permutation σ.

The statement we will show later (and make the preparations for today) is the following
stronger version of the theroem.

Theorem 1.2. Let µ be a permuton. If d(σ, µ) = 1
24 for every σ ∈ S4, then µ is the

uniform measure on [0, 1]2.

Fix a permuton µ, and denote λ to be the uniform measure. Define the joint CDF

F (x, y) := µ([0, x]× [0, y]).

We will see that it is useful to compute the integral∫
F (x, y) dλ = P(X ′ ≤ X,Y ′ ≤ Y ),

where (X,Y ) ∼ λ and (X ′, Y ′) ∼ µ. If we were integrating with respect to µ, we would
have ∫

F (x, y) dµ = P(X ′ ≤ X ′′, Y ′ ≤ Y ′′) =
1

2
d( 1 2 , µ),
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where (X ′′, Y ′′) ∼ µ.
With this as our motivation, we can rewrite the original integral as∫

F (x, y) dλ = P(X ′ ≤ X,Y ′ ≤ Y ),

where (X,Zx) ∼ µ and (Y, Zy) ∼ µ. That is, we instead sample 3 pairs of points from µ.
There are only 6 possibilities for the ordering of the points:

=
2

6
d( 1 2 3 , µ) +

2

6
d( 1 3 2 , µ) +

2

6
d( 2 1 3 , µ)

+
1

6
d( 2 3 1 , µ) +

1

6
d( 3 1 2 , µ) +

1

6
d( 3 2 1 , µ).

Next time, we will see how this helps us prove the theorem.
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