Mathematics 272 Lecture 3 Notes

Professor: Dan Král Scribe: Daniel Raban

January 28, 2025

1 Verifying Permutons as Limits and Integrating the Joint CDF of a Permuton

1.1 Recap of last lecture

Last time, we defined the subpermutation density

 $d(\sigma, \pi) = \text{prob.} |\sigma|$ random elements of π yield σ as a subpermutation,

where σ, π are two permutations. We also defined **permutons**, which are probability measures on the Borel σ -algebra of $[0, 1]^2$ that have uniform marginals; these represent an analytic notion of permutations.

A μ -random permutation of size k, where μ is a permuton, is generated by sampling k points independently from μ and reading a permutation off of the ordering of x- and ycoordinates. We also defined $d(\sigma, \mu)$ to be the probability a μ -random permutation of size $|\sigma|$ is σ .

We said that a sequence $(\pi_n)_{n\in\mathbb{N}}$ of permutations is **convergent** if $|\pi_n| \to \infty$ and for every permutation σ , $\lim_{n\to\infty} d(\sigma, \pi_n)$ exists. A permuton μ is a limit of a convergent sequence $(\pi_n)_{n\in\mathbb{N}}$ if for every permutation σ , $\lim_{n\to\infty} d(\sigma, \pi_n) = d(\sigma, \mu)$. Last time, we wanted to prove the following statement:

Proposition 1.1. Every convergent sequence of permutations has a limit permuton.

The limit is unique, and proving the uniqueness is left as an exercise. Last time, we proved the following lemma:

Lemma 1.1. Without loss of generality, for every k, there exists an n_0 such that for all $n \ge n_0$, 2^k divides $|\pi_n|$.

We also defined matrices A_n^k , which were $2^k \times 2^k$ matrices, by

$$(A_n^k)_{i,j} := \frac{\{x : \frac{i-1}{2^k} |\pi_n| < x \le \frac{i}{2^k} |\pi_n| \text{ and } \frac{j-1}{2^k} |\pi_n| < x \le \frac{j}{2^k} |\pi_n|}{|\pi_n|},$$

where we index the matrices from left to right and bottom to top. We also defined A^k to be the coordinate-wise limits of A_n^k . Using these matrices, we defined a premeasure μ_0 on the dyadic squares in $[0,1]^2$ by $\mu_0([\frac{i-1}{2^k},\frac{i}{2^k}) \times [\frac{j-1}{2^k},\frac{j}{2^k})) = (A^k)_{i,j}$. Using Carathéodory's extension theorem, we furnished the existence of a measure μ on the Borel σ -algebra extending μ .

1.2 Verifying our permuton construction

Now, let's finish the proof.

Proof. We have a convergent sequence $(\pi_n)_{n \in \mathbb{N}}$ of permutations and a measure μ . and we want to show that for every permutation σ ,

$$d(\sigma,\mu) = \lim_{n \to \infty} d(\sigma,\pi_n).$$

We will show that for every permutation σ and $\varepsilon > 0$, $|d(\sigma, \mu) - \lim_{n \to \infty} d(\sigma, \pi_n)| < \varepsilon$. Fix σ , and let k be such that $2^k > |\sigma|$. Let

$$\rho(\sigma, k) = \mathbb{P}(\mu$$
-random permutation of size $|\sigma| = \sigma | E)$,

where E is the event such that among the points $(x_1, y_1), \ldots, (x_{|\sigma|}, y_{|\sigma|})$, the x- or ycoordinates of no two points fall into the same dyadic interval. That is, there do not exist $1 \le i \ne j \le |\sigma|$ and $1 \le m \le 2^k$ such that $x_1 \in [\frac{m-1}{2^k}, \frac{m}{2^k})$ and $y_i \in [\frac{m-1}{2^k}, \frac{m}{2^k})$ and likewise for the y-coordinates. The idea is that we don't want to sample two points from the same row or the same column of our grid.

We can crudely upper bound

$$\mathbb{P}(E^c) \le 2\binom{|\sigma|}{2} \frac{1}{2^k}$$

using a union bound. As a consequence,

$$\rho(\sigma,k)\left(1-2\binom{|\sigma|}{2}\frac{1}{2^k}\right) \le d(\sigma,\mu) \le \rho(\sigma,k)\left(1-2\binom{|\sigma|}{2}\frac{1}{2^k}\right) + 2\binom{|\sigma|}{2}\frac{1}{2^k}.$$

So we conclude that

$$|d(\sigma,\mu) - \rho(\sigma,k)| \le 2 \binom{|\sigma|}{2} \frac{1}{2^k}.$$

We will now argue that

$$\rho(\sigma,k)\left(1-2\binom{|\sigma|}{2}\frac{1}{2^k}\right) \le d(\sigma,\pi_n) \le \rho(\sigma,k)\left(1-2\binom{|\sigma|}{2}\frac{1}{2^k}\right) + 2\binom{|\sigma|}{2}\frac{1}{2^k},$$

and letting $n \to \infty$ will give us that

$$\left|\lim_{n \to \infty} d(\sigma, \pi_n) - \rho(\sigma, k)\right| \le 2 \binom{|\sigma|}{2} \frac{1}{2^k}$$

Then we will have proven the desired claim with $\varepsilon = 4 \binom{|\sigma|}{2} \frac{1}{2^k}$. Letting $k \to \infty$ will then finish the proof.

Let us observe that

$$\rho(\sigma, k) = \sum_{\substack{1 \le x_1 < \dots < x_{|\sigma|} \le 2^k \\ 1 \le y_1 < \dots < y_{|\sigma|} \le 2^k}} |\sigma|! \prod_{i=1}^{k-1} (A^k)_{x_i, y_{\sigma(i)}},$$

where the $|\sigma|!$ comes from all different orders we can sample the $|\sigma|$ points. If we define $\rho_n(\sigma, k)$ to be the same thing but with respect to π_n , then

$$\rho_n(\sigma,k)\left(1-2\binom{|\sigma|}{2}\frac{1}{2^k}\right) \le d(\sigma,\pi_n) \le \rho_n(\sigma,k)\left(1-2\binom{|\sigma|}{2}\frac{1}{2^k}\right) + 2\binom{|\sigma|}{2}\frac{1}{2^k},$$

and the desired bound follows.

1.3 Integrating the joint CDF of a permuton

Theorem 1.1. Let $(\pi_n)_{n \in \mathbb{N}}$ be a sequence of permutation such that $\lim_{n \to \infty} d(\sigma, \pi_n) = \frac{1}{24}$ for every $\sigma \in S_4$. Then $(\pi_n)_{n \in \mathbb{N}}$ is convergent, and $\lim_{n \to \infty} d(\sigma, \pi_n) = \frac{1}{|\sigma|!}$ for every permutation σ .

The statement we will show later (and make the preparations for today) is the following stronger version of the theorem.

Theorem 1.2. Let μ be a permuton. If $d(\sigma, \mu) = \frac{1}{24}$ for every $\sigma \in S_4$, then μ is the uniform measure on $[0, 1]^2$.

Fix a permuton μ , and denote λ to be the uniform measure. Define the joint CDF

$$F(x, y) := \mu([0, x] \times [0, y]).$$

We will see that it is useful to compute the integral

$$\int F(x,y) \, d\lambda = \mathbb{P}(X' \le X, Y' \le Y),$$

where $(X, Y) \sim \lambda$ and $(X', Y') \sim \mu$. If we were integrating with respect to μ , we would have

$$\int F(x,y) \, d\mu = \mathbb{P}(X' \le X'', Y' \le Y'') = \frac{1}{2} d(1 \ 2 \ , \mu),$$

where $(X'', Y'') \sim \mu$.

With this as our motivation, we can rewrite the original integral as

$$\int F(x,y) \, d\lambda = \mathbb{P}(X' \le X, Y' \le Y),$$

where $(X, Z_x) \sim \mu$ and $(Y, Z_y) \sim \mu$. That is, we instead sample 3 pairs of points from μ . There are only 6 possibilities for the ordering of the points:

Next time, we will see how this helps us prove the theorem.